The Representation of Polyhedra by Polynomial Inequalities
نویسندگان
چکیده
A beautiful result of Bröcker and Scheiderer on the stability index of basic closed semi-algebraic sets implies, as a very special case, that every ^-dimensional polyhedron admits a representation as the set of solutions of at most d(d + l) /2 polynomial inequalities. Even in this polyhedral case, however, no constructive proof is known, even if the quadratic upper bound is replaced by any bound depending only on the dimension. Here we give, for simple polytopes, an explicit construction of polynomials describing such a polytope. The number of used polynomials is exponential in the dimension, but in the twoand three-dimensional case we get the expected number d(d + l) /2.
منابع مشابه
Polynomial Inequalities
Our main result is that every n-dimensional polytope can be described by at most (2n− 1) polynomial inequalities and, moreover, these polynomials can explicitly be constructed. For an n-dimensional pointed polyhedral cone we prove the bound 2n− 2 and for arbitrary polyhedra we get a constructible representation by 2n polynomial inequalities.
متن کاملGeneration of Basic Semi-algebraic Invariants Using Convex Polyhedra
A technique for generating invariant polynomial inequalities of bounded degree is presented using the abstract interpretation framework. It is based on overapproximating basic semi-algebraic sets, i.e., sets defined by conjunctions of polynomial inequalities, by means of convex polyhedra. While improving on the existing methods for generating invariant polynomial equalities, since polynomial in...
متن کاملPolynomial time vertex enumeration of convex polytopes of bounded branch-width
In the last years the vertex enumeration problem of polyhedra has seen a revival in the study of metabolic networks, which increased the demand for efficient vertex enumeration algorithms for high-dimensional polyhedra given by inequalities. In this paper we apply the concept of branch-decomposition to the vertex enumeration problem of polyhedra P = {x : Sx = b, x ≥ 0}. Therefore, we introduce ...
متن کاملOn Bernstein Type Inequalities for Complex Polynomial
In this paper, we establish some Bernstein type inequalities for the complex polynomial. Our results constitute generalizations and refinements of some well-known polynomial inequalities.
متن کاملCanonical representation for approximating solution of fuzzy polynomial equations
In this paper, the concept of canonical representation is proposed to find fuzzy roots of fuzzy polynomial equations. We transform fuzzy polynomial equations to system of crisp polynomial equations, this transformation is perform by using canonical representation based on three parameters Value, Ambiguity and Fuzziness.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 29 شماره
صفحات -
تاریخ انتشار 2003